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SUMMARY

An investigetion was mede of the low-speed lateral and directionsal

stability and control characteristics of a %—scale model of & prelimi-

nary Bell X-5 airplane design wilth variocus leasding-edge-slat end trailing-
edge-flap arrangements. The model was directionally unstable at high
1ift coefficients, but for the lower sweep angles instability occurred
only beyond the stall. For all sweep angles, the values of effective
dihedral were moderate at most 1lift coefficients but became smsll or
negative at high 1ift coefficients. The slats caused posltive effective
dihedral to be maintained at high 1ift coefficients for all sweep angles
and a full-span slat used on a 60° swept wing was beneficial in reducing
the directional 1nstability at high angles of attack. The directionsl
control was adequate to trim the model to at least 15° yaw for all
configuretions. The ailleron effectiveness was positive up through stall
for all conditions of sweep and the accompanying yawing moments were
favorgble in the low angle-of-attack range.

INTRODUCTION

An investigation of the stability and comtrol characteristics at

low speed of a %—scale model of a preliminery Bell X-5 airplane design

has been conducted in the Langley 300 MPH 7- by 10-foot tunnel. The
Bell X-5 airplene is a proposed research airplane incorporating wings
having a sweepback angle that can be varied continuously between 20°

and 60°. Provision for longitudinal translation of the wing with respect
to the fuselage 1s also made. *°

GQEETUERTIAD UNCLASSIFIED
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The present papexr contains the results of the lateral and directional

stebility and control tests of the model at four sweep angles and with L_i
various leading-edge-glat and trailing-edge-flap asrrangements. The
results of the longitudinsel stability and control investigation are
presented in reference 1.
SYMBOLS

The system of axes employed, together with an indication of the .
positive forces, moments, and angles, is.presented in figure 1. The
symbols used in this paper are defined as follows: T
Cr, 1ift coefficient (Lift/qS)
Cx longitudinal-force coefficient (X/qS)
Cy lateral-force coefficient (Y/qS)
Cy rolling-moment coefficient (L/qSb)
Cn pitching-moment coefficient (M/qSes50) )
Cn yawing-moment coefficient (N/qSb) )
X longitudinal force along X-axis, pounds .
Y lateral force along Y-axls, pounds
Z force along Z-axis (Lift equals -Z), pounds
L rolling moment about X-axis, foot-pounds
M pitching moment about Y-axlis, foot-pounds
K yawing moment about Z-axis, foot-pounds
Q free-streasm dynemlc pressure, pounds per square foot (pV2/2)
5 wing area, square feet . -
¢ wing mean aerodynamic chord, feet (based on plan forms

shown in fig. 2)

S50 wing mean aerodynamic chord at 50° sweep, feet -
c'’ streamwise wing chord, feet
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c wing chord perpendicular to quarter-chord line of
unswept wing, feet

b wing span, feet

v free-stream velocity, feet per second

A aspect ratio (b2/S)

o] mass density of alr, slugs per cubic foot

o angle of attack of thrust line, degrees

¥ sngle of yaw, degrees

i angle of incidence of stabilizer with respect to thrust

line, degrees

5 ' control-surface deflection measuredr in a plane perpendicular
to hinge line, degrees

A engle of sweepback of quarter-chord line of unswept wing,
degrees

Subscripts:

e elevator

a aileron

T rudder

f flap

¥ denotes partiael derivetive of a coefficient with respect

oCq
to yaw {example: 01* = W

APPARATUS AND METHCDS

Description of Model

The model used in the present Investigetion was & %—-—scale model

of a preliminary Bell X-5 design and must, therefore, be considered
only qualitatively representative of the Bell X-5 airplanme.
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Physical cheracteristics of the model are presented in figure 2,
and photographs of the model on the support strut are given as figure 3.
Figure L includes details of the various slats, flaps, and spoilers
investigated. A plain, sealed alleron was installed in the left wing
(fig. 2). The model was constructed of wood bonded to steel reinforcing
members. :

The wings were pivoted about axes normal to the wing-chord planes.
Thus, the wing incidence measured in & streamwise direction was zero
for all sweep angles. At all sweep angles, the wing wes located so
that the quarter chord of the mean aerodynamic chord fell st a fixed
fuselage station. The moment reference center was located at this same
fuselage station. (See fig. 2.)

The Jet-engine ducting was simulated on the model by the use of
an open, straight tube having an inside diameter equal to that of the
Jet exit and extending from the nose to the Jjet exit.

Tests

The tests were conducted in the Langley 300 MPH 7- by 10-foot
tunnel at a dynemic pressure of 34.15 pounds per square foot which
corresponds to a Mach number .of 0.152 and a Reynolds number of 2,000,000
based on the mean aerodynamic chord of the wing at 50° sweep for average
test conditions.

During the tests, no control was imposed on the flow quantity
through the Jet duct. Measurements made in subsequent tests indicated
that the inlet-velocity ratio varied between 0.78 and 0.86, the higher
values belng observed at low angles of attack.

Two types of tests were employed for determining the lateral
characteristics of the model. The perameters Cp , Cy , amd C were

determined from tests through the angle-of-attack range at ysw angles
of 0° and 5°. The lateral characteristics were also determined from
tests through s range of yaw angles at constent angle of attack.

Corrections

The sngle-of-attack, drag, and pltching-moment results have been
corrected for jet-boundasry effects computed on the basis of unswept
wings by the methods of reference 2. Independent calculations have
shown that the effects of sweep on these corrections are negligible.
A1l coefficients hasve been corrected for blocking by the model and its
wake by the method of reference 3.
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Corrections for the tare forces and moments produced by the sﬁpport
strut have not been applied. It is probsble, however, that the signifi-
cant tare corrections would be limited to small increments in pitching
moment and drag. '

Vertical buoyancy on the support strut, tunnel sir-flow misalinement,
and longitudinal pressure gradient have been accounted for in computation
of the test data.

RESULTS ARD DISCUSSION

Presentation of Results

The lateral-stebllity paremeters end aerodynamic characteristics in
yaw for the basic model and 1ts component perts sre presented in figures 5
to 18 with the wing at varying degrees of sweep. The effects of high-
1ift and control devices on these parsmeters and serodynamic character-
1stics are presented as follows:

Figure
Effect of slats c e s s s e s & s s e s s s e s e e e s s e 19t 25
Effect of £18DS « + « « o o o o « o o = « « « o« « o o = « « 26 %029
Effect of slats and flaps . . . « & ¢ &« &« ¢« o« & » « « « « « « 30 %o 32
Directional control . « ¢ « « +« o « « o« « « o« « « = « « « « « 33 to 36
Lateral contIrol © &« ¢ ¢ &« ¢ + o o ¢ ¢ « o « o o « ¢ o « o « 37 to k2

The aerodynamlc coefficlents presented herein are based on the wing
area end span of the sweep configuration in question end on the mean
gerodynamic chord of the wing st 50° sweep. Thus, the pitching-moment
coefficients are based on a reference length which is fixed in the
fuselage and is independent of the sweep angle, whereas all other
coefficients are of the usual form.

Basic Leteral Stability Characteristics

The static-laterel-stabllity parameters determined from tests at
yew angles of 0° and 5° are plotted agasinst 1ift coefficient in figure 5
for the complete basic model with the wing posltioned at varying degrees
of sweep. Lift curves for these configurstions are presented in figure 6.
The results of yaw tests at various angles of attack for the four sweep
configuretions are given in figure 7.

The wing dimensions given in figure 2 Indicate that a significant
reduction in wing span sccompanies an increase in sweep angle. Inasmuch
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as the yawing- and rolling-moment-coefficient values are dependent on
span as well as the actual moments, the reduction in span with increasing
.sweep must be kept in mind ‘in interpreting the data presented. Thus,

the increase with sweep of the directional stability at low and moderate
1iff coefficients, as shown in figure 5, may be largely attributed to

the wing-spen reduction with sweep rather than to any change In the
actual moments.

At high 1ift coefficlents, figure 5 indicates that directional
instabllity was encountered at all sweep angles. For the low sweep
engles, instability occurred only beyond the stall, but at 60° sweep an
extensive range of 1lift coefficlent in which directional instability
was experienced existed below the stall. In thls discussion, the stall
ls considered as the first major break in the 1lift curve. Inspection
of figure 7(d) indicates that this instability existed over a wide
renge of yaw angles. It may be observed from figures 5 and T that the
loss in directional stability was accompanled by a reduction in effective
dihedral. The values of Cz decreased and even became negative at
high sweep angles. v

At low 1lift coefficients, the rate of increase of effective dihedrsal
with 1ift coefficient increased with sweep as would be predicted by
simple sweep theory. As the 1lift coefficient was increased, the effective
dihedral reached a peek and then dropped off. The 1ift coefficient for
maximum effective dlhedral was progressively reduced as sweep increased
and corresponded roughly to the 1ift coefficient at which initial
separation on the wing occurred (see pitching-moment and drag dat ta of
reference 1). It is probable that at higher Reynolds numbers, the
initial separation would be delayedﬁtg_higher_llft coefficlents with a

corresponding increase in the maximum value o? ejf“c ive al.

The contribution of ‘the tail to the lateral characteristics of
the model at each sweep angle investlgated 1is presented in figures 8
to 15. .

For the tall-off tests, the vertical and horizontal talls were
removed as a unit. Thus, at equal angles of attack, comparison of the
tail-on and tail-off. results indicates an increment of 1ift coefficient
representing the 1ift of the horizontal tail.

A comparison of figures 10 and 1k shows a greater directional
instability of the wing-fuselage combination and a greater contrlbution
of the tail to directional stability for €60° sweep than for 35 sEweep.
Here again, this phenomenon may be attributed largely to the reduction
of wing span with sweep. It may be cbserved that the increased
directional instability at high angles of attack previously mentioned
was experienced to some extent with the tail removed, especially at
60° sweep (fig. 14).
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The characteristics through the yaw-sngle range are presented in
figures 16 and 17 for the fuselage-taill combination and the fuselage
alone. The coefficlents presented are based on the area and span of
the wing at 60° sweep. In figure 18 the lateral cheracteristics of
various combinations of model components are presented as & function
of angle of attack. The dats presented indicate that the wing alone
and the fuselage alone do not contribute gignificantly to the directional
instability of the model utilizing 60° wing sweep. The wing-fuselsge
and the fuselage-tail combinations, however, do have large unstable
trends at high angles of attack. Thus, the directional Instabllity of
the complete model must be a result of the mutual interference between
the wing, fuselage, and tail. Although the mechanism of this phenomenon
is not fully understood at present, it is probable that the unsymmetrical
stalling of the yawed swept wing, the sidewash on the vertical tall
caused by the strong vortex field shed from the swept wing, and the
interference of the fuselage on the tall at the high angles of attack
required to stall the swept wing are =211 important factors in producing
the directional instabllity observed.

Effect of Slats

The 1ift curves for the model with various slet locatlions are
given in figure 19 for sweep angles of 20°, 359, and 60°. The lateral
characteristics are presented for 20° sweep in figure 20, for 35° sweep
in figures 21 and 22, and for 60° sweep in figures 23 to 25. At 20° swee
extension of the slats &t low 1ift coefficients produced a small increase
in directional stability and a decrease in effective dihedral. For the
higher sweep engles, all slat configurations tested had very little effect
on the lateral characteristics at low 1ift coefficients. At high 1ift
coefficients all slat configurations were effective in reducing or
eliminating the loss in dihedral effect which occurred with slats
retracted. The slats at 20° sweeg actually caused the effective dihedral
to increase at the stall. TFor 20° and 35°C sweep, the slats tested
increased the 1ift coefficient at which directional instebility occurred.
This Increase maey be attributed to the Iincreassed maximum 1ift attainable
wlth the slats since directional instabilility occurred only after flow
separation was fairly complete. At 60° sweep, extending the entire slat
to position A again Increased the 1lift coefficient for directlonsl
Instability although, in this case, the maximum 1ift coefficient was
not increased. The effect of extending only the outboard halves of the
slet, however, was detrimental to directional stability at high 1ift
coefficients.
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Effect of Flaps

The 1ift curves for the model with flaps A, B, and C deflected 500
on the wing at 20° sweep and flap B deflected 50° on the wing at 60°
sweep are presented in figure 26. The effects of a 50° deflection of
flaps A, B, and C on the lateral~stability parameters of the model with
20° sweep are given in figure 27. Very little change in the directional
stablllty occurred when flap A or B was deflected other than to delsy the
decreased stability associated with wing stall to higher 1lift coefficilents.
An spprecisble increase in directional stabllity below the stall resulted
from deflection of flap C. Only moderste changes in effective dihedral
resulted from deflection of any of the flaps on the 20° swept wing. The
effect of flap B deflected 50° on the model when the wings were at
60° sweep (fig. 29) was such as to produce varying increases in direc-
tional stebility through the lift-coefficlent range. Instebility was
thus delayed to higher 1ift coefficlents. The effective dihedral was
" increased at low lift coefficlents by the use of flap B, but at high lift
coefficients large negative values of effective dihedral were obtained.

Effect of Slats and Flaps

Lift curves for the model with the wing swept to 20°, slats extended,
and flape deflected are presented in figure 30. The lateral-stability
parameters for these configurations are given in figure 31, A comparison
of figures 31 and 27 shows that deflecting the flaps did not appreciably
alter the effects of the slets previously noted for 20° sweep; that is,
extending the slats caused an Increase in effective dihedral at the
stall, and only minor changes in directional stability and effective
dihedral below the stall. ' ’

Directional Control

The effects of rudder deflection on the aerodynamic characteristics
of the model 1n yaw are given for a sweep angle of 20° in figures 33
and 34 and for 60° sweep in figures 35 and 36. The rudder effectiveness,
that is, the yawlng-moment coefficient produced by a given rudder
deflection, was essentially unaffected by the changes in model configu-
ration end esngle of attack made at each sweep angle. The change in
rudder effectiveness with sweep may be approximately accounted for by
the chenge in wing span with sweep. In each configuration, the model
could be trimmed at about 15° yaw by full rudder deflection except for
the 60° sweep, high-angle-of-attack case (fig. 36) in vwhich the decreased
directionsl stability allowed higher trimmed yaw angles. At low angles
of attack, for which the center of pressure of the vertical tail was
above the center of grevity, a negative rolling-moment increment
accompanied negatlive rudder deflections. Thils trend was eliminated or
reversed at higher angles of attack. '
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Lateral Control

The effect of aileron deflection on the.aerodynamic characteristics
of the model is presented for various model configuretions in figures 37
to 40. These data were obtained with only the left aileron deflected.
Although the existence of rolling moments for zero aileron deflection
indicetes unsymmetric flow separation from the wings combined with some
asymmetry in model construction end mounting, the Incremental effects
of aileron deflection should be essentlally independent -of the unsym-
metrical conditions. In 11 cases, the allerons were effective up to
and beyond the stall.

The yawing moments accompanying aileron deflection were favorable
gt low angles of atitack. Since the favorable yawing moments observed
would not be anticipated for the isolated wing-alleron combination, it
is believed that sidewash Induced at the tall by aileron deflection
contributed significantly to the yawing moments of the complete model.

In view of the possibility that alleron control would become
inadequate at transonic speeds, some exploratory tests were made to
determine the low-speed charscterigtics of spoller esilerons loceted as
showvn in figure L. Generally speaking, the results of these tests
(figs. 41 end 42) show that the rolling moments produced by the inboard
spoiler were comparsgsble to those produced by ebout 20° deflection
of one aileron. The outboard spoiler was slightly more effective
at 20° sweep, but considerably less effective at 60° sweep, than the
inboard spollier. At 20° sweep the spoillers lost effectiveness repidly
near the stall wilth reversal indicaeted slightly gbove stall. The
assoclated yawing moments were favorable and reasonably constant up
to about 8° angle of attack. When the wings were swept to 60°, the
inboard spoller produced small and varying unfavorasble yawing moments.
The yawing moments for the outboard spoller were again favorable at low

‘angles of attack. An Increase in drag at low angles of attack was
exhibited with a nose-up trim change for both sweeps and spoiler locations.
Although the spoller configurstlons investigated do not necessarily
represent an optimum spoiler design, further development was not under-
teken In view of the satisfactory slleron cherecteristics obtained.
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CONCLUSIONS

An investigation at low speed of the lateral and directional stabllity
and control of e %fscale model of a preliminary Bell X-5 airplane design

indicates the following conclusions:

1. Directionsal instability at high 11ft coefficients was observed
for all sweep angles but occurred only beyond the stall for the lower
sweep angles. This instablility 1s the result of the mutual interference
between the wing, fuselage, and tail.

2. For all sweep angles, the values of effective dlhedral were
moderate at most 1lift coefficlents but became small or negative at
high 1ift coefficients.

3. The slats were effective at all sweep angles in maintaining
positive effective dihedral at high 1lift coefficlents, and the use of
full-span slats at 60° sweep was helpful in alleviating directionsal
instablility at high 11ft coefficients.

k., Rudder control wes edequate to trim the model to &t least l5° yaw
for all configurations.

5. The ailerons were effective up to and beyond the stall, and
the aileron yawing moments were favorsable at low angles of attack.

Langley Aeronautical Lshbhoratory
National Advisory Committee for Aeronautics
Langley Ailr Force Base, Vs.

-
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Relative wind

Refotive wind

View A4-4

Figure 1.- System of axes and control-surface deflections. Positive S
values of forces, moments, and angles are indicated by arrows.
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BLID0CT W VOVN

£t




— e —— —_——

Leading edge of fillet swept
537 for all wing sweeps

0 0 20
BT

Scake, inches,

Figure 2.- Concluded.

Tt

B/ TO0GT W VOVN




NACA RM L50C1Ta . I

S e

(a) Slat extended; flap B; A = 20°.

(b) Slat extended; flap C; A = 20°.

Figure 3.- Views of test model mounted in tunnel.
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A e,

~——— (4) Slats retracted; &¢ = 0; A = 60°.
Figure 3.- Concluded.
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Fuseloge line at A=20°

Qcse
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Wing pivor point

», | o
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Fuselage line at A=60°

. Flap8 and C (split) 0-:-:‘%:3:510 Secfion A-A

Scate, inches.

SharA Slat B

Figure 4.- Details of flaps, slats, snd spoilers.
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